
Asia-pacific Journal of Convergent Research Interchange
Vol.6, No.7, July 31 (2020), pp.21-28

http://dx.doi.org/10.47116/apjcri.2020.07.03

ISSN: 2508-9080 APJCRI
Copyright ⓒ 2020 FuCoS 21

F2B+-tree: A Flash-aware B+-tree Using the Bloom Filter

Sungchae Lim1)

Abstract
As the price per bit of flash storage is rapidly decreasing, diverse research has been done to devise
flash-aware B+-tree indexes. Since the original B+-tree structure was devised for indexing data records
stored in hard disk drives, a naive transplant of the B+-tree into flash may degrade index performance.
This is because flash storage suffers from significant performance disparity between update operations and
read/write operations. To solve the problem, we adopt the probabilistic index structure, called the Bloom
filter. By using the Bloom filter, we make some free space in each node whose child nodes are leaf
nodes. We refer to such a node as the BF node. In the free space of a BF node, our proposed F2B+-tree
stores update logs in order to save histories of key inserts or deletes that have arisen in leaf nodes. Since
B+-tree's nodes except for leaf nodes are usually manipulated in a memory buffer pool, the F2B+-tree can
considerably reduce the amount of physical updates on flash storage. Additionally, we cluster a set of
sibling leaf nodes in a flash block such that garbage collection can be cheaply performed without
full-merges or half-merges. As a result, the F2B+-tree can prevent unpredictable fluctuations in performance
of flash-based databases, which could be caused by background-mode actions needed for garbage collection.

Keywords: Bloom Filter, B+-tree, Database System, Flash Memory, High-performance Index

1. Introduction

As the price per bit of flash storage is rapidly decreasing nowadays, many I/O-related research

has been done to use it as storage media of high-performance database systems[1-10]. Among

them, the algorithms for flash-aware B+-tree indexes have drawn much attention from computer

communities[3][5-9]. The B+-tree index was originally devised for efficient access to data records

stored in a hard disk drive (HDD). Since the B+-tree structure is easily able to provide a high

degree of fan-outs and space utilization ratio as well as the ability of range searches, it has

taken the first place among various other index schemes devised for HDD-based database

systems.

When it comes to the B+-tree being used in flash storage such as SSD (solid-state device), it

is required to take account of the negative effect of the inefficient update mechanism of flash

Received(March 09, 2020), Review Result(1st: April 04, 2020, 2nd: May 28, 2020), Accepted(June 25, 2020)

1) (Professor) 02748 Dept. of Computer Science, Dongduk Women’s Univ., Wolgok-dong, Seongbuk-gu,
Seoul, Korea
email: sclim@dongduk.ac.kr

F2B+-tree: A Flash-aware B+-tree Using the Bloom Filter

Copyright ⓒ 2020 FuCoS22

storage[4][5]. This is different from the HDD case, where HDD storage has no significant

performance disparity between update operations and read/write operations. Since the B+-tree

has most of its updates on leaf nodes that cannot be fully cached in the buffer pool, it cannot

avoid many of randomly scattered physical updates. Such an I/O characteristic of the B+-tree

is reported to worsen update’s inefficiency seriously, if the B+-tree is transplanted into flash

storage[2][3][5-9].

Against this problem, earlier researches[1-9] rely on two kinds of schemes, that is, an update

caching scheme and an in-storage logging scheme. In the update caching schemes, previous key

insert/delete operations are recorded accumulatively in either internal nodes or a separate

sub-tree for tracing them[1][6-9]. The areas for saving those update information are managed in

main memory. To ensure correct key searches, the cached update information is referred to by

a key searcher on the way to its target leaf node. When the memory space for update

information becomes full, recorded key inserts/deletes are written at once into leaf nodes. In

the in-storage logging scheme, on the other hand, the update information is recorded as log

records in log areas in storage[2-5]. The sibling leaf nodes share areas saving update log

records. More specifically, a log area is allocated for each flash block. By doing updates in the

unit of a flash block, the in-store logging scheme can guarantee efficiency of garbage collection.

For correct key searches, real-time redos are executed for restoring data pages correctly. For

both of schemes, heavy overhead is not avoidable because of a high cost paid for managing

the space used for update information.

In this paper, we adopt the probabilistic index structure of the Bloom filter (BF)[11][12] in

order to obtain a compact size of a B+-tree index. Using the free node space saved by the BF,

our proposed B+-tree stores update information. We refer to nodes containing BF data as BF

nodes, which are parent nodes of leaf nodes. When the free space made in a BF node comes

to be exhausted because of key inserts and key deletes, the recorded previous updates are

written to associated leaf nodes at once. Because such a batch-style update is executed within a

flash block, the proposed scheme can support a low cost of garbage collection.

The organization of this paper is as follows. In Section 2, we describe some technical

backgrounds about the Bloom filter and the flash-based B+-tree structure. In Section 3, we

present the proposed flash-based B+-tree, and then discuss the performance enhancement of this

research in Section 4.

Asia-pacific Journal of Convergent Research Interchange
Vol.6, No.7, July 31 (2020), pp.21-28

http://dx.doi.org/10.47116/apjcri.2020.07.03

ISSN: 2508-9080 APJCRI
Copyright ⓒ 2020 FuCoS 23

2. Technical Backgrounds

2.1 Bloom Filter

The Bloom filter (BF) is a probabilistic index of which data is represented by bit-vectors[11].

The BF index is created using the OR bit operation among bit-vectors that are computed with

a fixed number of hash functions. The BF index has three integer parameters of n, k, m, where

n is the maximum number of items to be indexed, k is the number of hash functions used for

creating bit-vectors, and m is the bit size of the BF index. When an item x is indexed with the

BF scheme using the parameters above, its bit-vector of v(x) is expressed with m bits. Here, if

the hash value of hash function hi(x) (1 ≤ i ≤ k) is integer j (1 ≤ j ≤ m), then the j-th bit

of v(x) is set to 1; otherwise, the bit is set to zero. To index a item x using the BF scheme,

we first compute an index bit-vector of v(x), which has the bit length of m and k bits of 1.

Then, we apply the OR bit operation between v(x) and its current BF index, where the initial

BF index is set with m bits of zero.

With the BF index built from BF bit-vectors of indexed items, we can answer a set

membership query for a given item. The membership test using the BF index is very simple.

For membership test of item x, we just check wether or not the result of an AND bit

operation between the BF index and v(x) equals to v(x). If equivalent, then membership query

on x will be returned with answer 'YES'.

Since the size parameter m can be appropriately controlled, the BF scheme is very useful for

many applications with memory limitation[11][12]. Because of the feature of the OR bit

operation, however, the BF scheme cannot avoid false positives. Furthermore, the BF index

cannot support the deletion operation without false negatives. The BF scheme is not good for

an application having many items that are removed over time. In other words, the BF scheme

is suitable for indexing either a fixed set of items or a constantly growing set of items[11].

2.2 Flash-based B+-trees

Due to the high popularity of NAND-type flash for its fast random reads, there have been lots

of researches for devising flash-aware B+-trees in database communities. A majority of

researches are focused on the problem of the expensive update operation in flash. Since leaf

nodes of a large B+-tree cannot be cached in the buffer memory of a database system, updates

F2B+-tree: A Flash-aware B+-tree Using the Bloom Filter

Copyright ⓒ 2020 FuCoS24

at a leaf level result in frequent physical updates on flash storage. Therefore, frequent updates

on leaf nodes seems to be a big threat to B+-tree performance in flash storage[11-13].

To solve this problem, diverse flash-based B+-trees have been proposed in literature[2-9].

Some studies proposed a B+-tree structure using a flash translation layer[4]. [3][5] employed a

logging technique to reduce physical updates on storage. For example, when attempting to

insert a key k into a leaf node L, an update record of (k, L, insert) is written in a separate

log area instead of updating L itself. The accumulated update records are reflected into

associated leaf nodes in a batch mode. For fast key search speeds, such update records could

be saved in buffer memory. For this, the update records are stored in internal nodes. Note that

the internal nodes of B+-tree are usually cached in a buffer pool. As another approach, [8]

used a separated subtree where update records are recorded and dumped down to a leaf level

for getting free space in the sub-tree. In the schemes above, there is a significant overhead for

key searching, because extra time for reading update records is consumed for every key search.

3. Proposed B+-tree Using the Bloom filter

3.1 Idea Sketch

In order to prevent the performance degradation caused by key deletion/insertion, our

proposed B+-tree structure is based on two ideas for performance enhancement. The first idea

is to save BF data in parent nodes of leaf nodes. Thanks to the compact size of BF data, we

can save some free space in each BF node and use it for storing insertion/deletion information

relevant with leaf nodes. From this, our tree can reduce physical updates on leaf nodes

without extra consumption of storage or memory space needed for saving update information.

The second idea is to minimize I/O cost paid for garbage collection by clustering sibling leaf

nodes in the same storage block. Since leaf nodes having same parent are updated in the unit

of a flash block, a cost for garbage collection for those nodes are very cheap in our scheme.

To describe the proposed flash-based BF-embedded B+-tree, or F2B+-tree for short, we use

[Fig. 1]. In the figure, BF data is stored at level 2 of F2B+-tree, where level 1 is that of leaf

nodes. The BF area saves the BF index that is made from key values saved in leaf nodes

belonging to a leaf block. Together with the BF data, update records for key deletion/insertion

are saved in the log area so that they can be dumped down to sibling leaf nodes at once. In

the figure, the boxes label with ‘Log’ are the areas for update records.

Asia-pacific Journal of Convergent Research Interchange
Vol.6, No.7, July 31 (2020), pp.21-28

http://dx.doi.org/10.47116/apjcri.2020.07.03

ISSN: 2508-9080 APJCRI
Copyright ⓒ 2020 FuCoS 25

[Fig. 1] An Example of the Proposed F2B+-tree Structure

Using a BF index at level 2, any searcher S makes a decision about whether or not it needs

to search down to a linked leaf block. If the downward search is decided via a set

membership test, then searcher S reads a leaf block and tries to find a leaf node containing its

search key. Then, the procedure for finding a target data record is executed by following the

same search algorithm as that designed for the original B+-tree.

The rest of space in a level-2 node is used for saving update records with the data structure

of (op, k, record ID). Here, the values for op are ‘plus’ or ‘minus’ representing insertion or

deletion, respectively. Two values of k and record ID are data for a key entry expressing ID of

a data record with key k. Whenever an update arises at a leaf node, a corresponding update

record is appended into the log area of its parent node. If the log area becomes full, then the

accumulated update records are reflected to a leaf block. Since nodes of level 2 are usually

manipulated within memory buffers, we can reduce a number of physical updates in leaf

nodes.

3.2 Idea Algorithm for the Key Search

Naturally, a greater size of a BF index in a node supports a lower false-positive rate. However,

since the larger BF index takes away space for saving update records from a BF node, we

need to consider a trade-off between the false-positive rate and the number of reduced update

costs. A feasible size of the BF index can be estimated using the well-known formula given in

[3][4]. The formula is as follows:

 ≅ × ――― (1)

, where FP(m, k, n) is the false-positive rate of the BF(m, k, n).

For a B+-tree structure with nodes of size 4 KB, we allocate 20% of node space as the space

F2B+-tree: A Flash-aware B+-tree Using the Bloom Filter

Copyright ⓒ 2020 FuCoS26

used for update records. In this case, for keys with sizes of 20 bytes to 40 bytes, we can save

updates records of 40 to 20 in number. Theoretically, we can reduce the number of physical

updates on leaf nodes in the proportion of the log area size.

In [Fig. 2], we show how to search down for a target leaf node with a given search key.

The procedure SearchRecor(d) of [Fig. 2] receives search key k and returns the address of a

leaf node containing that key; if there is no key in the B+-tree, the algorithm returns the result

of NULL. In the algorithm, we assume that a buffer pool is used to cache nodes, as with

usual database systems.

Procedure SearchRecord (in k, in root)
1. tree_level ← the height of the tree with the root pointer root;

2. Current ← Buf.read_node(root); // reading of a node using a buffer pool
3. while (tree_level ≧ 2) // searching down until a level-2 node is reached
4. Get the address to the next child node by using the index entries in Current ;
5. Let child be the node address of that child node to be accessed;
6. Current ← Buf.read_node(child); // reading of the next child node
7. tree_level ← tree_level - 1;
8. end_while
9. for update records r in Current

10. if r.key == k && r.op == ‘minus’ then return NULL; // deleted key

11. if r.key == k && r.op == ‘plus’ then return r.rec_ID; // inserted key
12. end_for
13. bit_vector ← BF_hash(key); // compute a bit-vector using the given hash functions
14. if bit_vector == (Current.BF & bit_vector) then // membership testing using BF data
15. Block ← Buf.read_block(Current.child_ID); // reading of a leaf block
16. Check if there is a leaf node containing a index entry having its key value of k;
17. if found then
18. Let key_entry be the found key entry; // index entry (key, rec_ID)
19. return key_entry.rec_ID; // return ID of the data record with key k
20. else
21. return NULL; // case of a false-positive
22. end_if
23. else
24. return NULL;
25. end_if

[Fig. 2] Algorithm for a Key Search in the Proposed F2B+-Tree

For space limitations, we do not present the detailed algorithm for an update process that

Asia-pacific Journal of Convergent Research Interchange
Vol.6, No.7, July 31 (2020), pp.21-28

http://dx.doi.org/10.47116/apjcri.2020.07.03

ISSN: 2508-9080 APJCRI
Copyright ⓒ 2020 FuCoS 27

performs key insertion or deletion. In the case of update processes in our scheme, they just

insert update records into nodes of level 2. While an update record is being written to a BF

node P, we do not modify the BF index of node P. A chance to the BF index is performed

when the accumulated update records are flushed to leaf nodes.

4. Conclusion

In this paper, we proposed an F2B+-tree index that incorporates the Bloom filter into the

B+-tree structure. Since B+-tree's nodes except for leaf nodes are usually updated within a

buffer pool, saving of update records does not impair the performance of the F2B+-tree index.

By delaying physical updates in leaf nodes, the proposed F2B+-tree can reduce considerably

physical updates. Additionally, we cluster a set of sibling leaf nodes in a flash block so that

garbage collection can be cheaply performed without full-merges or half-merge. As a result, the

proposed F2B+-tree can prevent undesirable fluctuations of storage throughput[13-15].

The downside of the proposed F2B+-tree comes from an inherent drawback of the FB index,

that is, existence of false positives. When a false positive occurs unfortunately during a key

search, our search algorithm reads a whole flash block and scans all the leaf nodes saved in

that. If frequency of such false-positive searches is high, the efficiency of key searching

becomes poor. However, such performance degradation is not realistic for two reasons. First,

the I/O overhead for reading leaf nodes is trivial in the case of flash storage. Because time for

reading a block is very short in flash, the extra reads caused by false-positive searching may

not degrade the B+-tree performance severely. Second, the false-positive rate itself can be kept

within a low degree. Since the BF index is made for a relatively small number of leaf nodes,

the rate of false-positive is very low.

Acknowledgement

This work was supported by the Dongduk Women’s University grant in 2019.

References

[1] Sangwon Park, Ha-Joo Song, Dong-Ho Lee, An Efficient Buffer Management Scheme for Implementing a
B-Tree on NAND Flash Memory, International Conference on Embedded Software and Systems, (2011) May
14-16; Daegu, Korea.

[2] Chin-Hsien Wu, Tei-Wei Kuo, Li Ping Chang, An Efficient B-tree Layer Implementation for Flash-memory

F2B+-tree: A Flash-aware B+-tree Using the Bloom Filter

Copyright ⓒ 2020 FuCoS28

Storage Systems, ACM Transactions on Embedded Computing Systems, (2012) Vol.6, No.3, pp.1-23, DOI:
https://doi.org/10.1145/1275986.1275991

[3] Gap-Joo Na, Sang-Won Lee, Bongki Moon, Dynamic In-Page Logging for B+-tree Index, The 18th ACM
conference on Information and knowledge management, (2012) November 4-6; Hong Kong, China.

[4] Stephan Baumann, Giel de Nijs, Michael Strobel, and Kai-Uwe Sattler, Flashing Databases: Expectations and
Limitations, International Workshop on Data Management on New Hardware, (2010) Jun 23; Indianapolis,
Indiana, USA.

[5] Sungchae Lim, A New Flash-based B+-tree with Very Cheap Update Operations on Leaf Nodes,
International Conference on Engineering Technologies and Big Data Analytics, (2016) Jan 21-22; Bangkok,
Thailand.

[6] Yinan Li, Bingsheng He, Robin Jun Yang, Qiong Luo, Ke Yi, Tree Indexing on Solid State Drives,
Proceedings of the VLDB, (2010) Sep 13-17; Singapore, DOI: https://doi.org/10.14778/1920841.1920990

[7] Hua-Wei Fang, Mi-Yen Yeh, Pei-Lun Suei, Tei-Wei Kuo, An Adaptive Endurance-aware B+-tree for Flash
Memory Storage Systems, IEEE Transactions on Computers, (2013), Vol.63, No.4, pp.2661-2673.

[8] Sai Tung On, Haibo Hu, Yu Li, Jianliang Xu, Flash-Optimized B+-Tree, Journal of Computer Science and
Technology, (2010), Vol.25, No.4, pp.509-522.

[9] Chang Xu, Lidan Show, Gang Chen, Cheng Yan, Tianlei Hu, Update Migration: An Efficient B+ Tree for
Flash Storage, International Conference on Database Systems for Advanced Applications, (2010), April 1-4;
Tsukuba, Japan.

[10] Jirapong Tongpang, Prasong Praneetpolgrang and Nivet Chirawichitchai, Hybrid Recommendation Technique
Selection Center Donated Bags with Data Envelopment Analysis, International Journal of Disaster Recovery
and Business Continuity, (2013), Vol.4, pp.45-56.

[11] Biplob Debnath, Sudipta Sengupta, Jin Li, David J. Lilja, David H.C. Du, BloomFlash: Bloom Filter on
Flash-based Storage, The 31st International Conference on Distributed Computing Systems, (2011), July 25;
Washinton DC, USA.

[12] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xueshan Luo, The Dynamic Bloom Filters, IEEE
Transactions on Knowledge and Data Engineering, (2010), Vol.22, No.3, pp.120-133.

[13] Siu Kang, Kazusa Ando, Tetsuya Yuasa, The Planning and Implementation of Smartphone Application
Designed to Efficient Donation for Direct Support to the 2011 Tohoku Earthquake-Affected Area,
International Journal of Disaster Recovery and Business Continuity, (2015), Vol.6, pp.1-8.

[14] Ashima Pansotra, Simar Preet Singh, Additive Hough Transform and Fuzzy C-Means Based Lane Detection
System, International Journal of Disaster Recovery and Business Continuity, (2017), Vol.8, pp.1-28.

[15] Sohrab Khan, Nor Zairah Ab. Rahim, Nurazean Maarop, A Review on Antecedents of Citizen’s Trust in
Government Social Media Services, International Journal of Disaster Recovery and Business Continuity,
(2018), Vol.8, pp.21-30.

