Effects of ß-aminoisobutyric acid(BAIBA) on Peripheral Neuropathy after Paclitaxel Treatment

February 28, 2023  |  Vol.9, No.2  |  PP. 193-202  | PDF

AUTHORS:

Jae Sung Park, Physical Education Department, Kongju National University, Republic of Korea

KEYWORDS:

Peripheral Neuropathy, Paclitaxel, Exercise Mimetics, ß-Aminoisobutyric Acid (BAIBA)

Abstract

Peripheral neuropathy is a common side effect resulting from treatment with the cancer chemotherapeutic drug paclitaxel. Paclitaxel binds to beta-tubulin and stabilized its polymerization. This leads to disruption of the mitotic spindle and arrest of the cell division. What we know is that paclitaxel treatment of neurons leads to an increase and altered distribution of detyrosinated tubulin, a marker for stable microtubules. There is growing evidences that exercise decreases symptoms of acute pain in human, has numerous beneficial effects on chronic disease, has an anti-inflammatory effect, and reduces neuropathic pain in rodents. Recent study report that PPAR-a ligands reduced behavioral signs of inflammatory pain in rats which is known to be up regulated by exercise. Also, the exercise mediated neurotrophic factors are believed to play an antinociceptive role. In this study, we used in vitro models of paclitaxel neuropathy to examine the potential neuroprotective effects of exercise. To conduct this experiment, we employed a metabolomic approach to examine metabolites in neuronal cells with chemotherapeutic drug paclitaxel, and medicated ß-aminoisobutyric acid (BAIBA) as exercise mimetics. ß-aminoisobutyric acid (BAIBA), a natural thymine catabolite, is involved in the beneficial effects of exercise on metabolic disorders. In particular, it has been reported to reverse the inflammatory processes observed in the peripheral organs of animal models of obesity. Also we did ATP assay to investigate the toxicity of our Immortalized DRG neuronal cells(50B11). We obtained that treatment of exercise mimetic drug, b-aminoisobutyric acid (BAIBA), has beneficial effect on paclitaxel neuropathy model. Our result suggest that exercise training protect or decreases peripheral neuropathic pain induced by paclitaxel treatment.

References:

[1] N. G. Gracias, T. R. Cummins, M. R. Kelley, D. P. Basile, T. Iqbal, M. R. Vasko, Vasodilatation in the rat dorsal hindpaw induced by activation of sensory neurons is reduced by paclitaxel, Neurotoxicology, (2011), Vol.32, No.1, pp.140-149.
DOI: http://dx.doi.org/10.1016/j.neuro.2010.09.006
[2] E. Briasoulis, V. Karavasilis, E. Tzamakou, C. Haidou, C. Piperidou, N. Pavlidis, Pharmacodynamics of non-break weekly paclitaxel (Taxol) and pharmacokinetics of Cremophor-EL vehicle: results of a dose-escalation study, Anticancer Drugs, (2002), Vol.13, No.5, pp.481-489.
DOI: http://dx.doi.org/10.1097/00001813-200206000-00006
[3] G. Melli, C. Jack, G. L. Lambrinos, M. Ringkamp, A. Hoke, Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration, Neurobiol Dis, (2006), Vol.24, No.3, pp.525-530.
DOI: http://dx.doi.org/10.1016/j.nbd.2006.08.014
[4] P. B. Schiff, S. B. Horwitz, Taxol stabilizes microtubules in mouse fibroblast cells, Proc Natl Acad Sci U S A, (1980) Vol.77, No.3, pp.1561-1565.
DOI: http://dx.doi.org/10.1073/pnas.77.3.1561
[5] N. B. Laferriere, T. H. MacRae, D. L. Brown, Tubulin synthesis and assembly in differentiating neurons, Biochem Cell Biol, (1997), Vol.75, No.2, pp.103-117.
DOI: http://dx.doi.org/10.1139/o97-032
[6] Y. Nakahashi, Y. Kamiya, K. Funakoshi, T. Miyazaki, K. Uchimoto, K. Tojo, K. Ogawa, T. Fukuoka, T, Goto, Role of nerve growth factor-tyrosine kinase receptor A signaling in paclitaxel-induced peripheral neuropathy in rats, Biochemical and Biophysical Research Communications, (2014), Vol.444, No.3, pp.415-419.
[7] K. Carlson, A. J. Ocean, Peripheral neuropathy with microtubule-targeting agents: occurrence and management approach, Clin Breast Cancer, (2011), Vol.11, No.2, pp.73-81.
DOI: http://dx.doi.org/10.1016/j.clbc.2011.03.006
[8] P. J. O'Connor, D. B. Cook, Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans, Exercise and Sport Sciences Reviews, (1999), Vol.27, pp.119-166.
[9] K. E. Kuphal, E. E. Fibuch, B. K. Taylor, Extended swimming exercise reduces inflammatory and peripheral neuropathic pain in rodents, J Pain, (2007), Vol.8, No.12, pp.989-997.
DOI: http://dx.doi.org/10.1016/j.jpain.2007.08.001
[10] Y. W. Chen, Y. T. Li, Y. C. Chen, Z. Y. Li, C. H. Hung, Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve, Anesth Analg, (2012), Vol.114, No.6, pp.1330-1337.
DOI: http://dx.doi.org/10.1213/ANE.0b013e31824c4ed4
[11] J. S. Park, A. Höke, Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors, PloS One, (2014), Vol.9.
[12] Y. Yajima, M. Narita, A. Usui, C. Kaneko, M. Miyatake, M. Narita, T. Yamaguchi, H. Tamaki, H. Wachi, Y. Seyama, T. Suzuki, Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice, J Neurochem, (2005), Vol.93, No.3, pp.584-594.
DOI: http://dx.doi.org/10.1111/j.1471-4159.2005.03045.x
[13] B. K. Taylor, N. Dadia, C. B. Yang, S. Krishnan, M. Badr, Peroxisome proliferator-activated receptor agonists inhibit inflammatory edema and hyperalgesia, Inflammation, (2002), Vol.26, No.3, pp.121-127.
[14] L. D. Roberts, P. Boström, J. F. O’Sullivan, R. T. Schinzel, G. D. Lewis, A. Dejam, Y. K. Lee, M. J. Palma, S. Calhoun, A. Georgiadi, M. H. Chen, V. S. Ramachandran, M. G. Larson, C. Bouchard, T. Rankinen, A. L. Souza, C. B. Clish, T. J. Wang, J. L. Estall, A. A. Soukas, C. A. Cowan, B. M. Spiegelman, R. E. Gerszten, ß-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic ß-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors, Cell Metab, (2014), Vol.19, pp.96-108.
[15] N. P. Staff, J. C. Fehrenbacher, M. Caillaud, M. I. Damaj, R. A. Segal, S. Rieger, Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems, Experimental Neurology, Vol.324.
DOI: https://doi.org/10.1016/j.expneurol.2019.113121
[16] S. C. Keswani, B. Chander, C. Hasan, J. W. Griffin, J. C. McArthur, A. Hoke, FK506 is neuroprotective in a model of antiretroviral toxic neuropathy, Ann Neurol, (2003), Vol.53, pp.57-64.
[17] S. Crouch, Biocompatibility testing ATP bioluminescence, Med Device Technol, (2000), Vol.11, No.8, pp.12-5.
[18] R. C. Polomano, A. J. Mannes, U. S. Clark, G. J. Bennett, A painful peripheral neuropathy in the rat produced by the chemotherapeutic drug, paclitaxel, Pain, (2001), Vol.94, pp.293-304.
[19] R. B. Lipton, S. C. Apfel, J. P. Dutcher, R. Rosenberg, J. Kaplan, A. Berger, A. I Einzig, P. Wiernik, H. H. Schaumburg, Taxol produces a predominantly sensory neuropathy, Neurology, (1989), Vol.39, pp.368-373.
[20] A. Mialhe, L. Lafanechere, I. Treilleux, N. Peloux, C. Dumontet, A. Bremond, M. H. Panh, R. Payan, J. Wehland, R. L. Margolis, D. Job, Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis, Cancer Res, (2001), Vol.61, pp.5024-5027.
[21] S. Schnyder, C. Handschin, Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise, Bone, (2015), Vol.80, pp.115-125.
[22] T. W. Jung, H. S. Park, G. H. Choi, D. Kim, T. Lee, ß-aminoisobutyric acid attenuates LPS-induced inflammation and insulin resistance in adipocytes through AMPK-mediated pathway, J Biomed Sci, (2018), Vol.25, p.27.
[23] S. Raschke, J. Eckel, Adipo-Myokines: Two Sides of the Same Coin-Mediators of Inflammation and Mediators of Exercise, Mediat Inflamm, (2013), pp.1-16.
[24] E. E. Kershaw, J. S. Flier, Adipose tissue as an endocrine organ, J Clin Endocrinol Metab, (2004), Vol.89, pp.2548-2556.
[25] N. Ouchi, J. L. Parker, J. J. Lugus, K. Walsh, Adipokines in inflammation and metabolic disease, nature reviews immunology, (2011), Vol.11, pp.85-97.
[26] C. J. C. Vermeer, A. E. Hiensch, L. Cleenewerk, A. M. May, N. Eijkelkamp, Neuro-immune interactions in paclitaxel-induced peripheral neuropathy, Acta Oncologica, (2021), Vol.60, No.10, pp.1369-1382.
DOI: https://doi.org/10.1080/0284186X.2021.1954241

Citations:

APA:
Park, J. S. (2023). Effects of ß-aminoisobutyric acid(BAIBA) on Peripheral Neuropathy after Paclitaxel Treatment. Asia-pacific Journal of Convergent Research Interchange (APJCRI), ISSN: 2508-9080 (Print); 2671-5325 (Online), KCTRS, 9(2), 193-202. doi: 10.47116/apjcri.2023.02.15

MLA:
Park, Jae Sung, “Effects of ß-aminoisobutyric acid(BAIBA) on Peripheral Neuropathy after Paclitaxel Treatment.” Asia-pacific Journal of Convergent Research Interchange, ISSN: 2508-9080 (Print); 2671-5325 (Online), KCTRS, vol. 9, no. 2, 2023, pp. 193-202. APJCRI, http://fucos.or.kr/journal/APJCRI/Articles/v9n2/15.html.

IEEE:
[1] J. S. Park, “Effects of ß-aminoisobutyric acid(BAIBA) on Peripheral Neuropathy after Paclitaxel Treatment.” Asia-pacific Journal of Convergent Research Interchange (APJCRI), ISSN: 2508-9080 (Print); 2671-5325 (Online), KCTRS, vol. 9, no. 2, pp. 193-202, February 2023.